
ABSTRACT: Drought management depends on indicators to detect
drought conditions, and triggers to activate drought responses. But
determining those indicators and triggers presents challenges.
Indicators often lack spatial and temporal transferability, compara-
bility among scales, and relevance to critical drought impacts. Trig-
gers often lack statistical integrity, consistency among drought
categories, and correspondence with desired management goals.
This article presents an approach for developing and evaluating
drought indicators and triggers, using a probabilistic framework
that offers comparability, consistency, and applicability. From that,
a multistate Markov model investigates the stochastic behavior of
indicators and triggers, including transitioning, duration, and fre-
quency within drought categories. This model is applied to the
analysis of drought in the Apalachicola-Chattahoochee-Flint River
Basin in the southeastern United States, using indicators of the
Standardized Precipitation Index (for 3, 6, 9, and 12 months), the
Palmer Drought Severity Index, and the Palmer Hydrologic
Drought Index. The analysis revealed differences among the perfor-
mance of indicators and their trigger thresholds, which can influ-
ence drought responses. Results contribute to improved
understanding of drought phenomena, statistical methods for indi-
cators and triggers, and insights for drought management.
(KEY TERMS: drought; indicators; triggers; stochastic; Markov
model; Standardized Precipitation Index; Palmer Index;
Apalachicola-Chattahoochee-Flint River Basin.)
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INTRODUCTION

Drought is common yet not commonly understood.
Drought conditions can be difficult to define, and
drought indicators and triggers can lack scientific jus-
tification. Yet sound indicators and triggers are
important to detect the onset of drought conditions, to

monitor and measure drought events, and to reduce
drought impacts.

While the complexity of drought has been well
noted (e.g., Dracup et al., 1980), approaches to devel-
op drought indicators and triggers are still needed.
Water managers grapple with questions concerning
which indicators to use, and which trigger values to
set for each indicator. In many cases, multiple indica-
tors are used, but multiple indicators on multiple
scales can confound the complexity of single indica-
tors. Even standardized indicators may use scales and
categorical thresholds that are spatially and tempo-
rally inconsistent (Karl et al., 1987; Guttman et al.,
1992), incomparable with other indicators, or difficult
to interpret and apply.

This paper provides an approach for expressing
indicators within a probabilistic framework, and for
evaluating their stochastic properties using a multi-
state homogenous Markov model. The usefulness of
this approach becomes apparent when comparing,
combining, and choosing among drought indicators,
and determining trigger values. It offers an equitable
basis for evaluation, ease of interpretation, and direct
application to water management decisions.

This model then investigates the performance 
of six indicators in a study of drought in the
Apalachicola-Chattahoochee-Flint (ACF) River Basin,
central to the “Tri-State Water Wars” – the federal
lawsuit concerning water allocation among the States
of Georgia, Alabama, and Florida. The determination
of drought indicators and triggers for the ACF basin
has become a focus of the Water Wars, as this deter-
mines the timing and type of management actions,
such as granting relief from the required flow targets.
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More generally, by using the model to evaluate and
quantify critical properties of drought indicators, deci-
sions can be based on justifiable and statistical crite-
ria rather than arbitrary or inconsistent criteria.

DIMENSIONS OF INDICATORS AND TRIGGERS

A drought indicator, briefly defined, is a variable to
identify and assess drought conditions. Common indi-
cators are based on meteorologic and hydrologic vari-
ables such as precipitation, streamflow, soil moisture,
reservoir storage, and ground water levels. A drought
trigger is a threshold value of the drought indicator
that distinguishes a drought category, and determines
when drought response actions should begin or end.
Drought categories typically represent levels of 
severity, such as “mild, moderate, severe, or extreme
drought.” For example, for an indicator of “stream-
flow,” a drought trigger could be “streamflow below
the 5th percentile for one month,” which could then
invoke the category of “extreme drought, ” and a cor-
responding set of management responses.

Because drought depends on numerous factors,
such as water supplies and demands, hydrologic and
political boundaries, and antecedent conditions, indi-
cators should be sensitive to context. More than 150
drought definitions have been published (Wilhite and
Glantz, 1985), and each one could conceivably gener-
ate a suite of relevant indicators.

The challenge then becomes how to select indica-
tors to represent and quantify drought conditions,
and how to establish triggers to achieve the desired
management goals. Important questions arise, such
as: How much will the indicator oscillate between
drought categories, or remain in the same drought
category? How frequently will the trigger be invoked?
How long will it stay in effect, once invoked? How do
these triggers relate to measures of drought severity?

To compound this challenge, indicators often lack a
consistent statistical basis for the triggers that deter-
mine drought categories. For example, the category of
“extreme drought,” as defined by the Palmer Drought
Severity Index (PDSI), includes values of less than or
equal to -4.00 (Palmer, 1965; Karl, 1986). Yet this cat-
egory has varying probability of occurrences, depend-
ing on location and time, ranging from less than 
1 percent in January in the Pacific Northwest to more
than 10 percent in July in the Midwest (Karl et al.,
1987; Guttman et al., 1992; Lohani et al., 1998).

In addition, even statistically consistent indicator
scales can be difficult to directly apply and combine
with other indicators. For example, the Standardized
Precipitation Index (SPI) (McKee et al., 1993), whose
indicator thresholds are based on the statistical 

Z-score, has varying probability differentials for equal
index differentials. The probability differential
between an SPI of -1.0 and -1.5 is 9.1 percent, and
between an SPI of -1.5 and -2.0 is 4.4 percent, for
instance, even though both represent an index differ-
ential of 0.5, and it is these index differentials that
define SPI drought categories. Moreover, drought cat-
egories are not necessarily comparable among indica-
tors. The category of “extreme drought” occurs less
than 4 percent of the time for the PDSI, considering
all months and climate divisions (Karl, 1986), but less
than 2.3 percent of the time for the SPI (McKee et
al., 1993).

The approach in this paper transforms indicators
to an equivalent categorization system based on per-
centiles. Once indicator data are transformed (as
described later in this paper), and categories of
drought severity are defined according to threshold
probabilities, the Markov model is applied to describe
and interpret the indicators in terms of their transi-
tioning, persistence, duration, and frequency within
categories. The motivation for this approach is to pro-
vide a flexible and equitable basis for using and
evaluating one or more drought indicators, determin-
ing trigger values, and linking triggers to drought cat-
egories that are comparable among indicators.

STOCHASTIC CHARACTERISTICS
OF INDICATORS

To analyze drought indicators and triggers, a mul-
tistate Markov chain is developed to represent the
time correlation of random variables (drought indica-
tors) that can take on the value of two or more states
(drought indicator categories). Consider a stochastic
process {Jn: n = 1, 2, …} with s categories {1, …, s}
where Jn represents the value of one of s possible
drought indicator categories during the nth time peri-
od. For each time period, the value of Jn+1 can either
remain in the same category as in the previous time
period, Jn, or it can change to one of the other cate-
gories. Assume that this stochastic process character-
izes the Markovian property, whereby the probability
of the future category Jn+1 depends only on the 
current category, Jn, but not on previous categories
Jn-1,...,J1. This characteristic of first-order discrete
time Markov chains can be expressed more formally
as

Pr {Jn+1 | Jn , Jn-1,...,J1} = Pr {Jn+1 | Jn}

Thus, the conditional probabilities for the category
of Jn+1 depend only on the category of Jn. While the
conditional probabilities of the future category depend
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only on the current category, the value of the future
category can nonetheless depend on prior categories;
that is, the categorical value of Jn+1 can depend not
only on the value of Jn, but also on  Jn-1, Jn-2,...,J1.

The Markovian property implies conditional inde-
pendence of values separated by more than one time
period, but there can still be statistical dependence
among values in a Markov series. For example, Pr
{Jn+1 = 1 | Jn = 2, Jn-1 = 1, Jn-2 = 2,...,J1 = 3} = Pr
{Jn+1 = 1  | Jn = 2} , but it is possible that Pr {Jn+1 = 
1 | Jn-2 = 2} ≠ Pr {Jn+1 = 1 |Jn-2 = 3}. If the condition-
al probabilities are independent of the time period
under consideration (n), then the Markov chain is
said to be stationary or homogeneous in time. That is,
for all categories i and j: Pr {Jn+1 = j | Jn = i} = Pr
{Jn+1+t = j | Jn+t = i} for t = {-(n), -(n-1), -(n-2),...,-1, 0,
1, 2,...}. The Markov chain is said to be nonstationary
(or nonhomogeneous) if the conditional probabilities
depend on the time period (n) under consideration.

Many drought indicators exhibit trends or cycles,
and are not inherently stationary; however, nonsta-
tionary data can often be processed to make a reason-
able assumption of stationarity. One approach is to
stratify the data into subsets that approximate sta-
tionarity, and conduct separate analyses with these
subsets. For instance, given a long term record of
monthly indicator values, the data for each month
across all years can be analyzed separately, rather
than analyzing all months from all years collectively.
Another approach is to transform the data by remov-
ing influences of location and spread from the dataset,
such as by subtracting periodic means and dividing by
periodic standard deviations. For instance, normal-
ized indicator values can be transformed to a statisti-
cal Z-score, which is a standardized anomaly with
constant mean and standard deviation. Both of these
approaches were employed for the study in this arti-
cle.

The performance of indicators in the Markov pro-
cess can be described by “transition probabilities,”
which are the conditional probabilities of being in a
certain category, Jn+1, for the future time period n+1,
given a certain category, Jn, for the present time peri-
od n. Let pij represent the transition probability that
Jn will be in category j at time n+1, given that Jn was
in category i at time n, expressed as

pij = Pr {Jn+1 = j | Jn = i}

Estimates of the transition probabilities, p̂ij, can be
calculated from the conditional relative frequencies of
the transition counts, mij

where mij = the frequency that Jn is in category i at
time n, and category j at time n+1. The numerator
represents the number of transitions from category i
to category j, and the denominator is the sum of the
number of transitions from category i to any other
category. These parameter estimates consider the
edge effect, meaning that the final point in the data
series is not counted in the denominator because
there is no data value that follows to be counted in
the numerator.

Let P = (pij) denote the matrix of transition proba-
bilities for the multistate first order Markov chain.
For an s-state Markov chain, the matrix will contain
s2 entries, where the sum of each row's entries will be
equal to 1, or (∑j pij) = 1 for each value of i. A sample
calculation of the transition probability matrix, as
part of the modeling process described in the follow-
ing section, is presented in the Appendix.

Drought Indicator Transitioning, Persistence,
Duration, and Frequency

For the model developed in this paper, define the
persistence probability, ξk, as the probability of
remaining in a drought category k (k=1,...,s) from
time n to time n+1

ξk = pij where  k = i = j

where the values ξk are represented by the diagonal
of the transition probability matrix.

Define υk as the random duration for which a
drought indicator remains in a category k during t
consecutive time periods. The probability of uninter-
rupted duration is 

P (υk = t) = ξk t-1(1- ξk)

for t-1 events of unchanging drought categories, fol-
lowed by a change in drought categories. This is based
on the geometric distribution, where (ξk) is the proba-
bility of remaining in the same drought category, and
(1-ξk) is the probability of changing drought cate-
gories. From this, the average duration becomes

which represents the average length of time (number
of consecutive time periods) that a drought indicator
will remain in drought category k.

Define Φk as the random frequency for which a
drought indicator will fall within a certain category, k 
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(k=1,...,s), and Φ = [Φ1, Φ2,...,Φs] as the frequency vec-
tor determined by the relationship

(I-AT) Φ = 0

where I is the identity matrix and AT is the transpose
of the transition probability matrix. This variable, Φk,
represents the number of discrete time periods rela-
tive to total time periods, expressed as a percentage,
that a drought indicator will be triggered in a certain
category k.

Drought Indicator Categories and Thresholds
Probabilities

The categories of drought (states of the stochastic
process) can be defined according to threshold proba-
bilities, τk, k (k=1,...,s), which represent cumulative
probabilities, F(xk), of a particular drought indicator
variable, such that

τk = F(xk) = Pr {X ≤ xk}

where X is a random value of the drought indicator,
and xk is the value of the drought indicator corre-
sponding to the threshold probability for category k.
The upper bound of a category is established by τk,
and the lower bound by τk+1. This set of threshold
probabilities is used to define trigger values for the
categories of an indicator.

The statistical characteristics of various drought
indicators can then be examined by using threshold
probabilities to define drought indicator categories
along a scale of cumulative probability. For example,
for a six-state categorization (from the example in the
Appendix)

{τ1,...,τ6} = {1.0, 0.5, 0.35, 0.20, 0.10, 0.05}

{(Jn=1; 0.50 < p(x) ≤ 1.00); (Jn=2; 0.35 < p(x) ≤ 0.50); 
(Jn=3; 0.20 < p(x) ≤ 0.35); (Jn=4; 0.10 < p(x) ≤ 0.20); 
(Jn=5; 0.05 < p(x) ≤ 0.10); (Jn=6; 0.00 ≤ p(x) ≤ 0.05)}.

In this example, drought severity increases with
increasing values of k, such that Jn = 1 represents wet
and near normal/wet conditions, Jn = 2 represents
near normal/dry conditions, and Jn = 3, 4, 5, 6 repre-
sents mild, moderate, severe, and extreme drought,
respectively. Note that this nomenclature is intended
to illustrate rather than define. The less severe cate-
gories are generally associated with drought mitiga-
tion and response, rather than drought conditions
per se, and the designation of drought is often
reserved for the most severe categories.

This model based on cumulative probability offers a

consistent basis for categorizing drought indicators
and for comparing multiple indicators and triggers.
Indicator data can be transformed to a scale based on
percentiles, with each datum corresponding to a par-
ticular percentile and drought category as defined by
threshold probabilities. The model can be readily
adapted to any number of categories of drought, with
any desired threshold probabilities, to accommodate
any number of indicators. The case study in the next
section illustrates the development, application, and
implications of this model, using six categories and
six indicators.

CASE STUDY: DROUGHT IN THE
ACF RIVER BASIN

The ACF River Basin (Figure 1) is formed by the
Apalachicola, Chattahoochee, and Flint Rivers in the
southeastern United States (U.S.). The basin
originates in the north Georgia mountains with the
Chattahoochee River and in the south metropolitan
Atlanta area with the Flint River. These rivers flow
into Lake Seminole near the Georgia-Florida border,
then into Florida as the Apalachicola River. The basin
is approximately 385 miles (619 km) long and 50
miles (80 km) wide. Most of the ACF basin lies in
Georgia (74 percent), with the remainder in Alabama
(15 percent) and Florida (11 percent). The ACF basin
has a semi-humid climate, with mean annual precipi-
tation of approximately 60 inches (152.4 cm) at the
north and south ends, and 45 inches (114.3 cm) at the
east central area. Water demands in the basin include
municipalities, industry, agriculture, hydropower,
navigation, fish and wildlife habitat, flood control,
water quality, and recreation (USACE, 1998).

Droughts in the southeastern U.S. have accentuat-
ed public concern about water availability and man-
agement in the basin. In May 1990, the U.S. Army
Corps of Engineers (USACE) proposed the realloca-
tion of reservoir storage for water supply in north
Georgia, and the State of Georgia submitted plans 
for a water supply reservoir approximately five 
miles upstream from the Alabama-Georgia state line.
The State of Alabama filed a lawsuit against the
USACE, challenging the proposed water realloca-
tions, and the State of Florida joined the fray. In
efforts to resolve the conflict, the States of Alabama,
Georgia, and Florida agreed to the Comprehensive
Study of the Apalachicola-Chattahoochee-Flint (ACF)
and Alabama-Coosa-Tallapoosa (ACT) River Basins,
which led to the ACF River Basin Compact, whose
purpose is to develop an allocation formula, with a 50-
year planning horizon, for equitably apportioning the
surface waters of the ACF basin among the three

JAWRA 1220 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

STEINEMANN

(7)

(8)

(9)



JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 1221 JAWRA

DROUGHT INDICATORS AND TRIGGERS: A STOCHASTIC APPROACH TO EVALUATION

Figure 1. The Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-
Tallapoosa (ACT) River Basins (modified from USACE, 1998).



states.
The development of a drought plan for the ACF

basin has become an integral and required part of the
ACF agreement. The drought plan will involve proce-
dures for identifying the onset and progression of
drought stages using appropriate indicators, a tiered
process of notices and mitigating actions, and proce-
dures for identifying the recession and termination of
drought stages (State of Florida, 2002; State of Geor-
gia, 2002). The identification of drought conditions is
also a part of the ACF allocation formula, in that
drought triggers can determine when relief can be
granted from the minimum flow and reservoir opera-
tion requirements (State of Florida, 2002; State of
Georgia, 2002).

As part of the ACF study, representatives from the
states considered several drought indicators, includ-
ing the Palmer Hydrologic Drought Index (PHDI),
and the 12-month Standardized Precipitation Index
(SPI-12). The states decided that indicator values for
the ACF basin would be calculated using a weighted
aggregation of climate division values, based on areal
extent of each climate division’s relative contribution
to the upstream (Alabama-Georgia) portion of 
the basin. Thus, the weighted ACF indicator value =
∑ [vi x wi], where vi = value of indicator for climate
division i, and wi = weight based on area of climate
division relative to upstream basin area. For Georgia
Climate Divisions 1, 2, 3, 4, 5, 7, and 8, these weights
are 0.6, 10.7, 1.2, 34.1, 0.1, 32.3, and 4.6 percent,
respectively. For Alabama Climate Divisions 5, 6, and
7, these weights are 4.1, 0.7, and 11.6 percent, respec-
tively. The states also decided upon a 63-year study
period (January 1939 to December 2001) for the anal-
ysis.

The study of drought indicators reported in this
paper, however, undertook a broader investigation of
indicators to compare and evaluate their perfor-
mance. This study included two Palmer indices (PDSI
and PHDI), and four SPI indicators based on 3, 6, 9,
and 12-month anomalies (SPI-3, 6, 9, 12). For each of
these six indicators in this investigation, 107 years of
monthly data representing the long term record (1895
to 2001) were obtained and transformed to cumula-
tive distribution functions for extracting percentiles
and determining categorical thresholds (as detailed in
the following sections).

A six-state Markov model was then applied to each
of these indicators, using categories of drought as 
previously defined by the threshold probabilities, 
τk (k=1,…,6) = {1.00, 0.50, 0.35, 0.20, 0.10, 0.05}.
These categories were selected for consistency with
the drought plan currently under development for the
State of Georgia. Yet any number of categories and
corresponding percentile ranges could be similarly
employed. Also, while the ACF study is ongoing, this

model can be similarly adapted, providing an
approach by which indicators can be analyzed, trig-
gers selected, and drought criteria established.
Accordingly, using this model, questions regarding the
persistence, transitions, duration, and frequency of
the drought indicators were investigated.

Palmer Drought Severity Index and Palmer
Hydrologic Drought Index

The PDSI, based on the Palmer Drought Model
(Palmer, 1965), is derived from principles of a mois-
ture balance, using historic records of precipitation,
temperature, and the local available water content of
the soil. The PHDI uses a modification of the PDSI to
assess moisture anomalies that affect streamflow,
ground water, and water storage (Karl, 1986).

The PDSI is generally defined for a spell of dry
weather by

PDSIi = 0.897PDSIi-1 + (Zi/3)

where i is the month of interest,
and Z is the moisture anomaly index which is given
by

Zi = (Pi - P̂i)Ki

where Pi is the observed precipitation for month i, P̂i
is the “climatologically appropriate precipitation for
existing conditions” (CAFEC), and Ki is a weighting
factor obtained by

where D
_

i is the average of the absolute values of (Pi -
P̂i) for month i during all years of record and Kí is
given by

where PEi is potential evapotranspiration, Ri is soil
water recharge, ROi is runoff, Pi is precipitation, and
Li is water loss from the soil, for month i. The overbar
denotes monthly averages for the period of record.
The expression inside the parentheses can be viewed 
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as the ratio of moisture demand to moisture supply
for the month and region.

The determination of when a drought has ended is
given by the computation of the “percentage probabili-
ty,” Pei, such that

where

Ui = Zi + 0.15

in the case of a drought, leading to

Ze = -2.691(PDSIi-1) - 1.5

which is the Z-value in a single month that will end a
drought, that is, bring the PDSI value to -0.5, based
on Equation (10).

The primary difference between the PDSI and the
PHDI is their beginning and ending times of a dry
spell, based on Pe – the ratio of moisture received to
moisture required to terminate a drought, where Pe is
greater than or equal to zero and less than or equal to
one. With the PDSI, the drought is considered to have
ended when Pe is greater than zero. With the PHDI,
however, the drought does not end until Pe is equal to
one.

The drought categories of the PDSI/PHDI (Table 1)
are based on Palmer's model (1965), with cumulative
frequencies for all months and all climate divisions in
the U.S. based on Karl (1986).

The cumulative frequencies associated with the
index values for each drought category, however, vary

according to region and time period under considera-
tion (Karl et al., 1987; Guttman et al., 1992; Soulé,
1992; Nkemdirim and Weber, 1999). For instance, the
probability of occurrence of the category of “extreme
drought” (-4.00 or less) is greater than 10 percent
(rather than less than 4 percent) in many regions of
the country (such as the Pacific Northwest), and that
probability also varies by month within a region
(Guttman et al., 1992).

The variability of the PDSI was also investigated
by Lohani et al. (1998) and Lohani and Loganathan
(1997), using a nonhomogenous Markov model. Here,
categories were defined by PDSI thresholds, and tran-
sition probabilities varied and depended on the month
and the climate division. Results confirmed differ-
ences in PDSI probabilities of occurrence, both tempo-
rally and spatially. For example, the PDSI category of
“extreme drought” occurred in Virginia CD1, January,
4.17 percent, July, 2.08 percent; and in Virginia CD6,
January, 3.12 percent, July, 1.04 percent.

Thus, a challenge in using the Palmer indices is
that the categorical threshold values (such as -1.50, 
-3.00, etc.) are not necessarily consistent, in terms of
probability of occurrence, either spatially or temporal-
ly. The variability among categories also hinders com-
parison of the Palmer indices with other indicators, as
illustrated earlier with the SPI (see Alley, 1984; Karl
et al., 1987; Guttman, 1998; Hayes et al., 1999).

The approach in this article converts the PDSI and
PHDI values to percentiles, rather than using the raw
index values and thresholds. The percentiles are
determined through empirically derived statistics
from a stratification of the long term record for each
month and each climate division, from which station-
ary transition probabilities can be derived for the
Markov model. Thus, in this homogeneous Markov
approach, the transitional probabilities are indepen-
dent of the month and the location. Using percentiles
instead of raw indicator values also enables compari-
son of multiple drought indicators and their stochas-
tic characteristics.

To transform the PDSI and PHDI into percentiles,
historical monthly PDSI and PHDI values for 107
years (1895 to 2001), obtained from the National Cli-
matic Data Center (NCDC), were used to develop an
empirical cumulative distribution function (ECDF) for
each month, using estimates of p(x) constructed from

x is the value of the drought indicator, i is the rank of
the order statistic, xi, where i = 1,...,n, and n is the
number of data values (see, Harter, 1994; Piechota
and Dracup, 1996). Thus, the smallest data value in
the sample is x(1), and the largest data value in the
sample is x(n). Once the ECDFs were generated for
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TABLE 1. Drought Categories for PDSI/PHDI.

Cumulative
Frequency

PDSI/PHDI (approximate)
Values Drought Category (percent)

0.00 to -1.49 Near Normal 28 to 50

-1.50 to -2.99 Mild to Moderate Drought 11 to 27

-3.00 to -3.99 Severe Drought 5 to 10

-4.00 or less Extreme Drought < = 4

the following ranking procedure, p(xi) =
i

n
where

( )
,

+ 1



each month and each climate division, percentile val-
ues were determined for each PDSI and PHDI value
for each month and each climate division. From that,
drought category values (i.e., 1,…,6) were associated
with each percentile value for each month, and the
Markov model was applied.

Standardized Precipitation Index

The SPI is a standardized anomaly, equivalent to
the statistical Z-score, representing the precipitation
deficit over a specific time scale, such as 3, 6, or 12
months, relative to climatology (McKee et al., 1993).
The calculation of the SPI begins with the transfor-
mation of a long term record of precipitation data
(typically 30 years or more, but in this model, 107
years) to a standard normal distribution. One com-
mon procedure is to fit a gamma distribution to the
data, although the Pearson III has also been recom-
mended (Guttman, 1999), and then to transform the
data to an equivalent SPI value based on the stan-
dard normal distribution. To begin, the gamma distri-
bution is defined by the probability density function

with x, α, β > 0, where α is a shape parameter; β is a
scale parameter; x, for this context, is precipitation
amount; and Γ(α) is the gamma function, defined by

The two parameters of the distribution, α and β,
are estimated for each station, for each time scale,
and for each month of the year. The maximum likeli-
hood approximations, using Thom (1958), are given by

and

where A is the sample statistic

which is the difference between the logs of the arith-
metic and geometric means.

The cumulative probability is given by

which can be expressed as

where

Because the gamma function is undefined for x
equal to zero, and precipitation may be equal to zero,
the cumulative probability becomes

H(x) = q + (1 – q) G(x)

where q is the probability of zero precipitation, which
can be estimated by m divided by n if m is the number
of zeros (Thom, 1958).

Climatological data for monthly total precipitation
and SPI values for a period of 107 years (1895 to
2001) were obtained from the NCDC and the Western
Regional Climate Center (WRCC), and transformed to
cumulative probabilities for the Markov model
through this process. To calculate the SPI, the values
of the variate (precipitation) from the fitted distribu-
tion (in this case, gamma) are transformed to values
of the variate on a prescribed distribution (in this
case, standard normal), so that the probability of
being less than a given value of the variate is the
same as the probability of being less than the corre-
sponding value of the transformed variate (following
Panofsky and Brier, 1958). From this, the statistical
Z-score (SPI value) can be assigned to each of the per-
centile values. Similarly, given SPI values, the associ-
ated percentiles can be directly determined, as these
correspond to the statistical Z-score percentiles.

The categories of the SPI, according to McKee et
al. (1993), are shown in Table 2.
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Although the SPI can represent different temporal
and spatial scales on a statistically comparable basis,
meaning that an SPI value is the same in terms of
cumulative probability across time periods and loca-
tions, the SPI values themselves can be difficult to
apply directly. For instance, a change of -0.5 in the
SPI value can represent a probability change of 9.1
percent (upper and lower bounds for moderate
drought) or a change of 4.4 percent (upper and lower
bounds for severe drought). The nomenclature and
percentiles associated with the SPI value can also be
inconsistent with other indices. For instance, in the
PDSI/PHDI, an index value of -1.49 corresponds to a
percentile of 28 percent, and a lower bound of “near
normal,” whereas with the SPI, an index value of 
-1.49 corresponds to a percentile of 6.8 percent, and a
lower bound of “moderate drought.” This provides
additional rationale for the use of percentiles for
developing, comparing, and evaluating triggers.

RESULTS:  EVALUATION OF
ACF BASIN INDICATORS 

The Markov model was used to analyze each of six
drought indicators for the ACF basin, using per-
centiles relative to each month based on the long term
record (January 1895 to December 2001), for the 63-
year study period (January 1939 to December 2001),
and for the six categories defined earlier in Equation
(9). Results are presented in Tables 3 through 6. This
section provides an interpretation of the model
results, and discussion of the decision making impli-
cations.

Drought Indicator Transitioning, Persistence,
Duration, and Frequency

The matrices of transition probabilities (Table 3)
address the question: What is the probability that a
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TABLE 2. Drought Categories for SPI.

Cumulative
Frequency

SPI Values Drought Category (percent)

0 to -0.99 Near Normal 16 to 50

-1.00 to -1.49 Mild to Moderate Drought 6.8 to 15.9

-1.50 to -1.99 Severe Drought 2.3 to 6.7

-2.00 or less Extreme Drought < 2.3

TABLE 3. Drought Indicator Transition Probabilities, pij,
Based on the Six-State Markov Model for ACF Basin

Indicators for the Study Period (1939 to 2001).

State “j”
State “i” 1 2 3 4 5 6

PHDI
1 0.892 0.092 0.014 0.002 0.000 0.000
2 0.315 0.444 0.234 0.008 0.000 0.000
3 0.075 0.280 0.398 0.247 0.000 0.000
4 0.000 0.029 0.235 0.500 0.221 0.015
5 0.000 0.100 0.250 0.400 0.100 0.150
6 0.000 0.000 0.000 0.083 0.083 0.833

PDSI

1 0.882 0.106 0.012 0.000 0.000 0.000
2 0.315 0.414 0.252 0.018 0.000 0.000
3 0.088 0.154 0.451 0.308 0.000 0.000
4 0.054 0.068 0.203 0.446 0.203 0.027
5 0.211 0.000 0.053 0.368 0.158 0.211
6 0.000 0.000 0.038 0.192 0.000 0.769

SPI-3

1 0.777 0.120 0.061 0.031 0.007 0.005
2 0.486 0.143 0.219 0.105 0.038 0.010
3 0.313 0.208 0.198 0.219 0.042 0.021
4 0.132 0.224 0.289 0.171 0.092 0.092
5 0.097 0.065 0.194 0.323 0.194 0.129
6 0.048 0.000 0.000 0.333 0.381 0.238

SPI-6

1 0.837 0.122 0.041 0.000 0.000 0.000
2 0.395 0.306 0.218 0.073 0.008 0.000
3 0.157 0.255 0.353 0.176 0.039 0.020
4 0.048 0.113 0.258 0.355 0.129 0.097
5 0.000 0.080 0.160 0.320 0.280 0.160
6 0.000 0.000 0.083 0.208 0.208 0.500

SPI-9

1 0.894 0.079 0.023 0.005 0.000 0.000
2 0.327 0.376 0.257 0.040 0.000 0.000
3 0.122 0.224 0.429 0.184 0.041 0.000
4 0.030 0.091 0.227 0.424 0.152 0.076
5 0.000 0.000 0.143 0.429 0.321 0.107
6 0.000 0.000 0.053 0.105 0.263 0.579

SPI-12

1 0.892 0.090 0.018 0.000 0.000 0.000
2 0.376 0.410 0.205 0.009 0.000 0.000
3 0.038 0.333 0.423 0.192 0.013 0.000
4 0.016 0.049 0.213 0.459 0.213 0.049
5 0.000 0.000 0.028 0.361 0.444 0.167
6 0.000 0.000 0.000 0.158 0.316 0.526



given indicator, currently in drought category “i,” will
be in drought category “j” for the next time period?
The analysis of transition probabilities can be used
for short term and long term planning, and the proba-
bilistic characterization of the progression and reces-
sion of drought. For example, assume the current
category is Category 5. For the SPI-3, p5j = {0.097,
0.065, 0.194, 0.323, 0.194, and 0.129}, whereas for
SPI-12, p5j = {0.000, 0.000, 0.028, 0.361, 0.444, and
0.167}.  For the SPI-3, the most probable category for
the next time period would be moving to Category 4
(32.3 percent), with a lesser probability (19.4 percent)
of remaining in Category 5 or transitioning to Catego-
ry 3, and even lesser probabilities (9.7, 6.5, and 12.9
percent) of transitioning to Categories 1, 2, and 6,
respectively. Yet for the SPI-12, the most probable cat-
egory for the next time period would be remaining in
Category 5 (44.4 percent), a lesser probability (36.1
percent) of transitioning to Category 4, even lesser
probabilities (2.8 and 16.7 percent) of transitioning to
Categories 3 and 6, respectively, and a zero probabili-
ty (0.0 percent) for Categories 1 and 2. Thus, the SPI-
3 exhibits greater oscillation among drought
categories [e.g., 9.7 percent probability of transition-
ing from a severe drought (Category 5) to wet/near
normal conditions (Category 1) within a month];
whereas the SPI-12 exhibits less oscillation and more
stability around its current category [e.g.,  0.0 percent
probability of transitioning from a severe drought
(Category 5) to wet/near normal conditions (Category
1)].

Next, consider the persistence probabilities (Table
4), which address the question: What is the probabili-
ty that the drought category for the next time period
will be the same as the current drought category?
Maximum values of ξk (k=1,...,6) occurred for ξ1
SPI-9; ξ2 PHDI; ξ3 PDSI; ξ4 PHDI; ξ5 SPI-12; and ξ6
PHDI, meaning that these indicators have the highest
persistence for each drought category during the
study period. (The persistent probabilities in Table 4
represent the diagonal values of the transition proba-
bility matrices in Table 3.) The PHDI’s relatively high
persistence can be explained, in part, because the
indicator tends to respond slowly to short term
changes. For the SPI-12, the indicator is based on a
12-month moving average, and thus will be less sensi-
tive to monthly changes, and similarly the nine-
month basis for the SPI-9. The indicator with the
minimum value of ξk for nearly all categories is the
SPI-3, consistent with its shorter averaging period
(three months) and greater oscillation relative to the
other indicators.

Now consider duration. This addresses the ques-
tion: Once a certain drought category is triggered,
what is the average length of time that it will remain
triggered? For duration (Table 5), maximum values of

υk (k=1,…,6) were consistent with maximum values of
ξk, given their mathematical relationship. Values of
υk for the SPIs generally followed the magnitude of
their time scale (3, 6, 9, or 12 months), with the SPI-3
having the shortest duration, and the SPI-9 or SPI-12
having the longest duration. For k = 1, 5, maximum
values of υk occurred for the SPI-9 and SPI-12 respec-
tively, and for k = 2, 3, 4, 6 for the PHDI and PDSI.
For instance, for the category of extreme drought (k =
6), υ6 = 1.313 months for the SPI-3, yet υ6 = 6.0
months for the PHDI, meaning it remains triggered,
on average, more than four times as long. Values of υk
also depend on the probabilistic range of the category,
based on Equation (9) (e.g., Category 1 is 50 percent,
Category 6 is 5 percent), which relates to frequency.

Frequency addresses the question: What is the
probability that an indicator will trigger a certain
drought category during a certain time period? For
these six indicators (Table 6), and this 63-year study
period (1939 to 2001), values of Φ1 for each indicator
were greater than categorical values (i.e., the per-
centile ranges for each category, based on the long
term record, 1895 to 2001), and values of Φ3, Φ4, Φ5,
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TABLE 4. Drought Indicator Persistence Probabilities, ξk,
Based on the Six-State Markov Model for ACF Basin

Indicators for the Study Period (1939 to 2001).

1 2 3 4 5 6

PHDI 0.892 0.444 0.398 0.500 0.100 0.833

PDSI 0.882 0.414 0.451 0.446 0.158 0.769

SPI-3 0.777 0.143 0.198 0.171 0.194 0.238

SPI-6 0.837 0.306 0.353 0.355 0.280 0.500

SPI-9 0.894 0.376 0.429 0.424 0.321 0.579

SPI-12 0.892 0.410 0.423 0.459 0.444 0.526

TABLE 5. Drought Indicator Durations, υk (months),
Based on the Six-State Markov Model for ACF Basin

Indicators for the Study Period (1939 to 2001).

1 2 3 4 5 6

PHDI 9.261 1.797 1.661 2.000 1.111 6.000

PDSI 8.510 1.708 1.820 1.805 1.188 4.333

SPI-3 4.484 1.167 1.247 1.206 1.240 1.313

SPI-6 6.147 1.442 1.545 1.550 1.389 2.000

SPI-9 9.426 1.603 1.750 1.737 1.474 2.375

SPI-12 9.250 1.696 1.733 1.848 1.800 2.111



and Φ6 were less than or equal to the categorical val-
ues for all indicators. For Φ2, the PHDI, SPI-6, and
SPI-12 were greater than the categorical value,
whereas the PDSI, SPI-3 and SPI-9 were less than
the categorical value. This means that, overall, dry
conditions were less frequent during the 63-year
study period, relative to the long term record, even
though discretized periods exhibited more frequent
dry conditions. For instance, half-decadal analyses
found extreme drought conditions were more frequent
during the period 1951 to 1955, with Φ6 = 19.7, 23.0,
6.6, 14.8, 13.1, and 16.4 percent for the PHDI, PDSI,
SPI-3, SPI-6, SPI-9, and SPI-12, respectively, whereas
the categorical value is 5 percent. Thus, frequency
analyses can also help to delineate and compare peri-
ods of drought, and categorize drought severity.

Implications for Drought Management

There are several decision making implications of
these results. First, concerning transition probabili-
ties and persistence, while these analyses can deter-
mine whether an indicator is more persistent or more
oscillatory than other indicators, determining the
degree of persistence that is desired in an indicator
depends on the decision and the decision maker. Some
water managers prefer an indicator to remain in a
certain category of drought, once triggered, for at
least a certain period of time; otherwise, it could
cause confusion and lack of credibility if that category
and associated management responses were frequent-
ly invoked and revoked. Other water managers prefer
an indicator that would be more sensitive to short-
term changes, and easily invoked and revoked, to
make sure that drought conditions were addressed
with timely responses.

The transition probabilities, combined with infor-
mation on duration, can also help to determining
whether an indicator would be an early warning or a
false alarm of drought progressing or receding. That
is, as drought progresses, is the indicator value an
early warning of long term drought, or is it an artifact
of a short term deficit? As drought recedes, is the indi-
cator value a sign of long term recovery, or of a short
term surplus? While definitions of drought vary wide-
ly, as do criteria for early warnings and false alarms,
the analyses can nonetheless help to characterize the
sequencing and probability of categories of drought
severity.

Consider, for instance, indicators that invoke Cate-
gory 4 (moderate drought). For the SPI-3, p4j = {0.132,
0.224, 0.289, 0.171, 0.092, and 0.092}, and for the
PHDI, p4j = {0.000, 0.029, 0.235, 0.500, 0.221, and
0.015}. This indicates a 64.5 percent probability that
the SPI-3 will transition to a less severe category
(Category 1, 2, or 3) in the next time period, and a
26.4 percent probability that the PHDI will move to a
less severe category. Even if the SPI-3 or PHDI were
to transition from Category 4 to a less severe category,
such as Category 1, 2, or 3, each indicator could
nonetheless transition back to Category 4 or a more
severe category in the subsequent time period, with a
probability of 47.8 percent (for the SPI) and 25.7 per-
cent (for the PHDI) respectively, based on values of
pij, (i = 1, 2, 3; j = 4, 5, 6). Thus, a decision tree of pos-
sible outcomes, such as drought category triggering or
cumulative precipitation deficits (see, Lohani and
Loganathan, 1997), and their associated probabilities
can be generated for any number of future time peri-
ods by using the transition probabilities.

Duration concerns how long a drought trigger is
likely to remain in a certain category, once it is
invoked, as the time period associated with persis-
tence. Some water managers prefer indicators with a
longer duration as to incur less risk of invoking a cer-
tain drought category, only to revoke that drought cat-
egory soon after. Other water managers prefer
indicators with a shorter duration to pick up anoma-
lous periods of dryness that may be precursors to
longer term drought. Duration is also relevant for
triggers that are defined for multiple time periods. As
an example, for the currently proposed State of Geor-
gia Drought Plan, to invoke a certain category of
drought, an indicator needs to be in a certain (or more
severe) category of drought for two or more consecu-
tive months, and to revoke a certain category of
drought, all indicators need to be in a certain (or less
severe) category of drought for four or more consecu-
tive months. These triggers are intended to alert and
guide decision makers, however, rather than automat-
ically invoke and revoke statewide drought responses
(Steinemann, 2003).
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TABLE 6. Drought Indicator Frequencies, Φk, Based
on the Six-State Markov Model for ACF Basin
Indicators for the Study Period (1939 to 2001).

1 2 3 4 5 6
(%) (%) (%) (%) (%) (%)

PHDI 56.3 16.4 12.3 9.1 2.6 3.2

PDSI 57.4 14.7 12.0 9.9 2.5 3.4

SPI-3 56.4 13.9 12.7 10.0 4.2 2.8

SPI-6 55.3 16.4 13.5 8.2 3.3 3.3

SPI-9 58.6 13.4 13.0 8.8 3.7 2.5

SPI-12 58.7 15.5 10.4 8.1 4.8 2.5

Categorical 50.0 15.0 15.0 10.0 5.0 5.0



Frequency analyses can be used both retrospective-
ly and prospectively to establish drought triggers,
compare drought indicators, and characterize drought
severity. For example, given a desired frequency of
triggering of drought responses, an historical analysis
of indicators can reveal the threshold values that
would correspond to that frequency, which then can
provide a basis for trigger values in a drought man-
agement plan. Frequency analysis can also determine
if drought triggers and categorical definitions are on
parity; that is, if multiple indicators are used, to
determine if the threshold values for each category
would trigger at the same or desired frequency. In
addition, frequencies can delineate periods of drought
conditions, and characterize the severity of those con-
ditions, by comparing categorical triggering. Frequen-
cy information can be considered along with
transitioning and duration to assess trigger behavior.
For instance, the long term SPI-3 and SPI-12 would
have the same theoretical frequency of triggering a
category, yet the patterns of triggering are typically
quite different: the SPI-3 is more intermittent, where-
as the SPI-12 is more persistent. In this study, the
model analyzed all six indicators according to the
same categorical scale, based on percentiles, so that
they were comparable in terms of frequencies or prob-
ability of occurrence. But the same model could also
be used to evaluate indicators on different categorical
scales to see which ones would have been triggered
more frequently, as the example below will demon-
strate.

ACF Basin Triggers Evaluation

To extend this evaluation, the Markov model was
used to characterize proposed drought triggers for the
ACF study negotiations. In the proposal dated Jan-
uary 11, 2002, conditions for drought relief were
based on single trigger values: (a) The ACF basin
weighted SPI-12 less than -1.40, or (b) The ACF basin
weighted PHDI less than -2.29. Note that, in this
case, the categorical thresholds were based on index
values rather than percentiles. A two-state Markov
model was applied, where Category 0 meant the trig-
ger was not invoked, and Category 1 meant the trig-
ger was invoked. Indicators were based on the same
63-year study period (1939 to 2001) for the ACF
basin. Results are presented in Table 7.

This analysis revealed that, using the proposed
index values as triggers, the PHDI trigger would be
invoked more frequently, and would remain invoked
longer on average, than the SPI-12. The PHDI was
triggered 11.9 percent of the time, with an average
duration of 3.9 months, whereas the SPI-12 was
triggered 5.3 percent of the time, with an average

duration of 3.1 months. Although durations were com-
parable, the frequencies differed appreciably. For the
study period, the PHDI would have triggered relief for
90 months, whereas the SPI-12 would have triggered
relief for 40 months – less than half of the PHDI.

Differences concerning the probability of triggering
by specific months were also investigated. Whereas
the SPI-12 probabilities based on the long-term record
(associated with the SPI value of -1.40, with a cumu-
lative probability of 8.08 percent) are consistent for
each month, the PHDI probabilities based on the long
term record (associated with the index value of -2.29)
vary by month. Table 8 shows the percentiles associ-
ated with PHDI values (-4.0, -3.0, -1.5, and 0.0) for
the ACF basin, based on the long term record. For
example, for an index value of -4.0 or less (“extreme
drought”) for January, the cumulative probability is
1.2 percent, whereas for July, the cumulative proba-
bility is 3.2 percent. Table 8 also shows that, for each
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TABLE 7. Markov Model Results for Proposed Drought
Triggers for the ACF Basin Compact Study (PHDI ≤ -2.29;

SPI-12 ≤ -1.40) for the Study Period (1939 to 2001).

State “j”
State “i” 0 1

PHDI
(Category 0 ≥ -2.29, Category 1 < -2.29)

Transition Probabilities

0 0.967 0.033
1 0.256 0.744

Duration

30.2 3.9

Frequency / Total (percent)

0 88.1
1 11.9

SPI-12
(Category 0 ≥ -1.40, Category 1 < -1.40)

Transition Probabilities

0 0.982 0.018
1 0.325 0.675

Duration

55.0 3.1

Frequency / Total (percent)

0 94.7
1 5.3



of the months, the cumulative probabilities vary from
those reported in Karl (1986).

To analyze this variability, and to place the triggers
on a statistically comparable basis, the long term
record of indicator data for the PHDI and SPI-12 were
transformed into percentiles, and compared by
month. Table 9 shows, in the first column of numeri-
cal data, the PHDI cumulative probability associated
with the index value of -2.29 for each month and, in
the second column of numerical data, the PHDI value
for each month that would correspond to the same
cumulative probability (8.08 percent) of triggering as
the SPI-12 value of -1.40. This analysis revealed an
inconsistency with the proposed trigger values for the
ACF study. The PHDI trigger of -2.29 was set higher
(triggered more frequently) than the SPI value of 
-1.40, and that triggering frequency also varied by
month. The triggers are currently being reevaluated,
and a more complete evaluation of indicators is being
performed for the ACF study.

This leads to a more general question about the
selection and combination of indicators for represent-
ing drought conditions. The Palmer indices may not
adequately represent droughts affecting managed
water systems; one reason is that water supply stor-
age is not directly considered in the index. The SPI is
based on only precipitation, and droughts are often
influenced by other factors (such as demand);
although the SPI can capture such factors indirectly,
such as reduced demand for outdoor water use

because of increased precipitation. Whereas the SPI-3
is indicative of shorter term precipitation anomalies,
and can be an early warning of potential long-term
drought, it is also more oscillatory and can also cause
more frequent invoking and revoking of drought
responses. The SPI-12 reflects longer term dryness, as
do the PHDI and PDSI, and may respond more slowly
to incipient drought conditions, yet it is also more per-
sistent and stable. The SPI-6 and SPI-9 provide inter-
mediate indicators between the SPI-3 and the SPI-12
and Palmer indices. The point is that a single indica-
tor of drought may often be insufficient. If multiple
indicators are used, they should be transformed to a
consistent scale, such as percentiles, and evaluated
according to metrics, such as those investigated by
the Markov model, that will clarify, inform, and justi-
fy their use in decision making.

SUMMARY

Drought has multiple dimensions, and this paper
presents an approach for comparing, combining, and
choosing among multiple drought indicators and trig-
gers. It offers a framework based on percentiles,
which provides not only spatial and temporal com-
parability, but also intuitive and direct application 
to water management decisions. From this, a multi-
state Markov model was developed to evaluate
drought indicators and their performance according to
characteristics of transition probabilities, persistence,
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TABLE 8. Empirical Cumulative Probabilities for the PHDI,
According to Month and Index Thresholds, for the ACF

Basin, Based on the Historic Record (1895 to 2001).

PHDI
-4.0 -3.0 -1.5 0.0

(percent) (percent) (percent) (percent)

January 1.2 7.8 30.4 51.4

February 1.8 4.8 24.9 50.9

March 2.3 3.7 31.1 51.3

April 2.0 4.2 32.2 54.6

May 1.7 6.6 30.4 48.0

June 1.7 7.4 29.3 49.4

July 3.2 8.1 29.5 51.1

August 2.6 7.0 29.9 56.2

September 2.7 8.9 29.0 51.3

October 2.8 9.0 29.2 50.8

November 3.1 6.6 26.5 54.3

December 1.4 8.0 28.7 57.3

TABLE 9. Comparison of (a) Monthly Trigger Probabilities for
the PHDI Value of -2.29; and (b) Monthly PHDI Values

for the Trigger Probability (8.08 percent) Associated
With the SPI Value of -1.40, Both for the ACF Basin,

Based on the Historic Record (1895 to 2001).

(a) (b)
-2.29 (PHDI value) 8.08 (percent)

January 14.4 -2.92

February 11.9 -2.62

March 16.2 -2.59

April 15.4 -2.67

May 19.9 -2.82

June 20.4 -2.88

July 17.2 -3.00

August 19.1 -2.83

September 19.7 -3.05

October 15.6 -3.05

November 16.1 -2.85

December 14.9 -2.99



duration, and frequency within drought severity cate-
gories. The model is adaptable to any number of
drought category definitions, and any range of per-
centiles. While the model can provide quantitative
results, the criteria for what is desirable in indicators
and triggers, such as degree of persistence, depends
on the decision-making context. Important criteria
independent of context, however, are that indicators
and triggers should be understandable to the public
and decision makers, statistically sound and defensi-
ble, and evaluated for their performance under pro-
gressing, continuing, and receding drought conditions. 

APPENDIX

EXAMPLE OF CALCULATION OF MARKOV
TRANSITION PROBABILITY MATRIX

Step 1: Obtain raw indicator data. In this example,
the indicator is the SPI-3 for the period of January
1990 to December 2000 for the ACF Basin (Table A1). 

Step 2: Determine percentiles associated with the
raw values of the indicators (Table A2), as detailed in
the article, through a stratification or transformation.

Step 3: Determine the drought category Jn = s (n = 1,
2,…; s = 1,2,...,6) associated with the percentile value
(Table A2), according to the categorical thresholds
shown in Table A3.
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TABLE A2. Percentile Values for the SPI-3 for January 1990 to December 2000.

SPI-3
Percentiles 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

January 0.88 0.74 0.61 0.96 0.57 0.33 0.77 0.63 0.93 0.32 0.32
February 0.89 0.69 0.78 0.57 0.44 0.53 0.63 0.80 0.92 0.20 0.10
March 0.85 0.85 0.79 0.74 0.64 0.53 0.84 0.59 0.87 0.23 0.21
April 0.60 0.61 0.47 0.50 0.57 0.42 0.70 0.58 0.90 0.05 0.11
May 0.53 0.93 0.17 0.50 0.49 0.12 0.68 0.44 0.76 0.11 0.11
June 0.15 0.93 0.24 0.09 0.65 0.25 0.26 0.79 0.51 0.44 0.05
July 0.14 0.93 0.49 0.05 0.99 0.17 0.14 0.57 0.22 0.54 0.02
August 0.04 0.75 0.81 0.03 1.00 0.39 0.24 0.32 0.21 0.39 0.08
September 0.05 0.44 0.77 0.08 1.00 0.23 0.58 0.32 0.83 0.07 0.40
October 0.16 0.15 0.73 0.51 0.95 0.89 0.68 0.74 0.78 0.21 0.46
November 0.21 0.10 0.95 0.70 0.86 0.89 0.58 0.95 0.72 0.38 0.77
December 0.32 0.17 0.95 0.65 0.72 0.90 0.43 0.96 0.08 0.35 0.54

TABLE A1. SPI-3 Raw Data for January 1990 to December 2000.

SPI-3
Raw Values 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

January 1.198 0.633 0.282 1.788 0.166 -0.429 0.755 0.334 1.458 -0.465 -0.465
February 1.244 0.491 0.771 0.183 -0.161 0.085 0.333 0.838 1.400 -0.848 -1.255
March 1.031 1.033 0.798 0.637 0.354 0.087 1.011 0.218 1.142 -0.747 -0.811
April 0.244 0.276 -0.068 0.008 0.178 -0.210 0.534 0.209 1.304 -1.657 -1.232
May 0.067 1.462 -0.941 -0.001 -0.035 -1.179 0.480 -0.153 0.691 -1.238 -1.216
June -1.021 1.464 -0.713 -1.317 0.373 -0.676 -0.647 0.799 0.030 -0.155 -1.612
July -1.066 1.456 -0.033 -1.627 2.450 -0.961 -1.067 0.175 -0.778 0.104 -2.046
August -1.785 0.667 0.879 -1.817 3.299 -0.272 -0.692 -0.470 -0.815 -0.269 -1.395
September -1.612 -0.161 0.729 -1.385 2.788 -0.749 0.189 -0.470 0.950 -1.512 -0.263
October -0.983 -1.048 0.619 0.037 1.665 1.245 0.467 0.647 0.770 -0.809 -0.107
November -0.797 -1.264 1.665 0.526 1.066 1.236 0.211 1.631 0.574 -0.308 0.736
December -0.476 -0.972 1.628 0.390 0.568 1.310 -0.171 1.802 -1.380 -0.378 0.109



{(Jn = 1; 0.50 < p(x) ≤ 1.00); (Jn = 2; 0.35 < p(x) ≤ 0.50);
(Jn = 3; 0.20 < p(x) ≤ 0.35); (Jn = 4; 0.10 < p(x) ≤ 0.20);
(Jn = 5; 0.05 < p(x) ≤ 0.10); (Jn = 6; 0.00 ≤ p(x) ≤ 0.05)}

Step 4: Calculate transition probability matrix by cal-
culating the number of times that a drought level Jn =
i is followed by a drought level Jn+1 = j.

For example, in Table A4, starting with drought
category 1 (Jn = 1), the transitions to the next drought
category can be determined as follows.

• 56 times that i = 1, j = 1
(e.g., January 1990 to February1990)

• 9 times that i = 1, j = 2
(e.g., August 1991 to September 1991)

• 4 times that i = 1, j = 3
(e.g., May 1996 to June 1996)

• 1 time that i = 1, j = 4
(e.g., May 1990 to June 1990)

• 1 time that i = 1, j = 5
(e.g., November 1998 to December 1998)

• 0 times that i = 1, j = 6

• 71 times total that i = 1
(e.g., January 1990, February 1990, etc.)

mij = number of times that Jn is in state i at time n, 
and state j at time n+1.

m11 = 56
m12 = 9
m13 = 4
m14 = 1
m15 = 1
m16 = 0

Σj mij = 71.

Step 5: Determine the transition probabilities by cal-
culating the conditional relative frequencies of the
transition counts.

i, j = 1,...,s.

Using information from Table A5, the transition
probabilities become

p̂11 = m11 / Σjm1j = 56/71 = 0.79
p̂12 = 9/71 = 0.13
p̂13 = 4/71 = 0.06
p̂14 = 1/71 = 0.01
p̂15 = 1/71 = 0.01
p̂16 = 0/71 = 0.00
etc.

The full set of transition probabilities are provided
in Table A6.
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TABLE A4. Drought Category Based on the SPI-3 Indicator for the ACF Basin.

SPI-3
Drought Levels 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

January 1 1 1 1 1 3 1 1 1 3 3
February 1 1 1 1 2 1 1 1 1 4 4
March 1 1 1 1 1 1 1 1 1 3 3
April 1 1 2 1 1 2 1 1 1 6 4
May 1 1 4 2 2 4 1 2 1 4 4
June 4 1 3 5 1 3 3 1 1 2 5
July 4 1 2 5 1 4 4 1 3 1 6
August 6 1 1 6 1 2 3 3 3 2 5
September 5 2 1 5 1 3 1 3 1 5 2
October 4 4 1 1 1 1 1 1 1 3 2
November 3 4 1 1 1 1 1 1 1 2 1
December 3 4 1 1 1 1 2 1 5 2 1

TABLE A3. Drought Category Thresholds.

Category Percentile Range

1 0.50 to 1.00
2 0.35 to 0.50
3 0.20 to 0.35
4 0.10 to 0.20
5 0.05 to 0.10
6 0.00 to 0.05

transition probability estimates = p̂
m

mij
ij

ijj

= ∑
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